2022年 11月 5日

用python解决线性规划

这是线性规划的标准型:

这么看未免有些抽象,我们将在代码中逐步了解

1.我们先来看一个题目:

 先导入库函数:

 from scipy import optimize

import numpy as np

 之后,范围限定,注意,系统默认是小于等于且求最小值,所以一切大于等于的不等式都要在两边同时乘以-1:

c = np.array([4,-1])      #导入向量,因为是4x-y,所以是【4,-1】

A = np.array([[-1,1],[-1,-1]])    #不等式变为小于等于后,不等式左边的向量

b = np.array([5,0])          #将系数移至右边时,右边的向量

x=(None,3)                 #规定x的范围

y=(None,None)         #规定y的范围

 最后就是求解啦:

res = optimize.linprog(c,A,b,bounds=(x,y))       #这里就是直接按照引用函数的标准来啦

print(res)

 综上,完整代码如下:

  1. from scipy import optimize
  2. import numpy as np
  3. c = np.array([4, -1])
  4. A = np.array([[-1, 1], [-1, -1]])
  5. b = np.array([5, 0])
  6. x = (None, 3)
  7. y = (None, None)
  8. res = optimize.linprog(c, A, b, bounds=(x, y))
  9. print(res)

我们可以得到结果:

fun就是所求结果,而x:array()就是x的取值

2.我们再来看一个更复杂的题目,这里的限制条件多了等式:

有了之前的基础,这次直接放完整代码,题目中等式的约束对应的就是代码中的Aeq,beq:

  1. from scipy import optimize
  2. import numpy as np
  3. c = np.array([2,3,-5])
  4. A = np.array([[-2,5,-1],[1,3,1]])
  5. b = np.array([-10,12])
  6. Aeq = np.array([[1,1,1]])
  7. beq = np.array([7])
  8. x1 = (0,None)
  9. x2 = (0,None)
  10. x3 = (0,None)
  11. res=optimize.linprog(-c,A,b,Aeq,beq,bounds=(x1,x2,x3))
  12. print(res)

 可以得到结果:

 一定要注意,系统默认的都是小于等于的条件和求最小值,所以最后求最大值的时候输出的是-c

3.在数学建模解线性规划问题时,更常用到的方法是调包pulp库,大多数人认为它更方便且功能更强大,我们来看看如何使用吧:

仍然是这一个题

 首先,导入pulp库并定义线性规划问题:

  1. import pulp
  2. Myproblem = pulp.LpProblem(sense=pulp.LpMaximize)

之后,定义变量:

  1. x1 = pulp.LpVariable('x1',lowBound=0,upBound=None,cat='Continuous')
  2. x2 = pulp.LpVariable('x2',lowBound=0,upBound=None,cat='Continuous')
  3. x3 = pulp.LpVariable('x3',lowBound=0,upBound=None,cat='Continuous')

lowBound定义下界,upBound定义上界,cat设定变量类型,Continuous是连续型,Integer是离散型,Binary表示0/1变量

接下来,定义变量的范围,标准格式是‘问题名 += 约束条件表达式’:

  1. Myproblem += 2*x1+3*x2-5*x3
  2. Myproblem +=(x1+x2+x3==7)
  3. Myproblem +=(2*x1-5*x2+x3>=10)
  4. Myproblem +=(x1+3*x2+x3<=12)

最后就是求解啦~:

  1. Myproblem.solve()
  2. for i in Myproblem.variables():
  3. print(i.name,'=',i.varValue)
  4. print('F(x)=',pulp.value(Myproblem.objective))

完整的代码:

  1. import pulp
  2. Myproblem = pulp.LpProblem(sense=pulp.LpMaximize)
  3. x1 = pulp.LpVariable('x1',lowBound=0,upBound=None,cat='Continuous')
  4. x2 = pulp.LpVariable('x2',lowBound=0,upBound=None,cat='Continuous')
  5. x3 = pulp.LpVariable('x3',lowBound=0,upBound=None,cat='Continuous')
  6. Myproblem += 2*x1+3*x2-5*x3
  7. Myproblem +=(x1+x2+x3==7)
  8. Myproblem +=(2*x1-5*x2+x3>=10)
  9. Myproblem +=(x1+3*x2+x3<=12)
  10. Myproblem.solve()
  11. for i in Myproblem.variables():
  12. print(i.name,'=',i.varValue)
  13. print('F(x)=',pulp.value(Myproblem.objective))

得到的结果是:

结果的表示是不是非常清晰,非常明了哈哈~ 

ps:如果有哪儿写的不太清楚欢迎留言,我会即使改进,如果哪儿写的有问题也欢迎指正